「レーザー走査型顕微鏡」の版間の差分

提供: Precipedia
移動: 案内検索
4行: 4行:
 
==詳細==
 
==詳細==
  
<B>用途</B>
+
<B>用途</B><BR>
 
一般的な光学顕微鏡とは異なり,単に試料を観察するだけではなく,試料の三次元的な形状や構造の解析も可能であり(図1),ライフサイエンス分野や工業計測分野で広く用いられている.比較的簡単,高速に微細な領域の凹凸形状を測定できるため,近年では非接触表面性状測定機[1]として利用する場面も増えてきている.
 
一般的な光学顕微鏡とは異なり,単に試料を観察するだけではなく,試料の三次元的な形状や構造の解析も可能であり(図1),ライフサイエンス分野や工業計測分野で広く用いられている.比較的簡単,高速に微細な領域の凹凸形状を測定できるため,近年では非接触表面性状測定機[1]として利用する場面も増えてきている.
 
<BR>
 
<BR>
  
<B>基本原理</B>
+
<B>基本原理</B><BR>
 
対物レンズによって回折限界まで絞り込んだ集光スポット(一般には直径0.5µm~数µm程度)を二次元的に走査しながら試料表面に向けて照射する.対物レンズの焦点位置と光学的に共役な位置に配置した共焦点ピンホールを介して試料表面からの反射光を受光し二次元画像を構築する.このとき,焦点面以外からの光は共焦点ピンホールによって排除されるため,焦点の合った部分のみが画像化される(図2).この画像は光学セクショニング画像と呼ばれ,ボケ像が重畳しないため通常の光学顕微鏡よりもコントラストが高い.セクショニングの効果は光源波長が短いほど,対物レンズの開口数が大きいほど強くなる性質を持つ[2].
 
対物レンズによって回折限界まで絞り込んだ集光スポット(一般には直径0.5µm~数µm程度)を二次元的に走査しながら試料表面に向けて照射する.対物レンズの焦点位置と光学的に共役な位置に配置した共焦点ピンホールを介して試料表面からの反射光を受光し二次元画像を構築する.このとき,焦点面以外からの光は共焦点ピンホールによって排除されるため,焦点の合った部分のみが画像化される(図2).この画像は光学セクショニング画像と呼ばれ,ボケ像が重畳しないため通常の光学顕微鏡よりもコントラストが高い.セクショニングの効果は光源波長が短いほど,対物レンズの開口数が大きいほど強くなる性質を持つ[2].
三次元形状測定の原理
+
 
 +
<BR>
 +
 
 +
<B>三次元形状測定の原理</B><BR>
 
試料と対物レンズの距離を相対的に変化させながら光学セクショニング画像を複数取得し,画像の各画素について最大輝度値とその時の最大位置(Z)を求める(図3).各画素で求めた最大位置(Z)は標本表面の相対的な高さの分布を示していることから,これが三次元形状データとなる(図4左).また各画素で求めた最大輝度値を画像化したものは全ての画素位置で焦点の合った画像となっており,全焦点画像またはエクステンド画像(図4右)と呼ばれる.
 
試料と対物レンズの距離を相対的に変化させながら光学セクショニング画像を複数取得し,画像の各画素について最大輝度値とその時の最大位置(Z)を求める(図3).各画素で求めた最大位置(Z)は標本表面の相対的な高さの分布を示していることから,これが三次元形状データとなる(図4左).また各画素で求めた最大輝度値を画像化したものは全ての画素位置で焦点の合った画像となっており,全焦点画像またはエクステンド画像(図4右)と呼ばれる.
  

2016年5月10日 (火) 14:59時点における版

レーザー走査型顕微鏡(Laser scanning microscope)とは,光軸方向にセクショニング効果を持つ共焦点顕微鏡の一種である.照明用の光源にレーザー光を使用する.“共焦点レーザー走査型顕微鏡”や単に“レーザー顕微鏡”と呼ばれることもある.


目次

詳細

用途
一般的な光学顕微鏡とは異なり,単に試料を観察するだけではなく,試料の三次元的な形状や構造の解析も可能であり(図1),ライフサイエンス分野や工業計測分野で広く用いられている.比較的簡単,高速に微細な領域の凹凸形状を測定できるため,近年では非接触表面性状測定機[1]として利用する場面も増えてきている.

基本原理
対物レンズによって回折限界まで絞り込んだ集光スポット(一般には直径0.5µm~数µm程度)を二次元的に走査しながら試料表面に向けて照射する.対物レンズの焦点位置と光学的に共役な位置に配置した共焦点ピンホールを介して試料表面からの反射光を受光し二次元画像を構築する.このとき,焦点面以外からの光は共焦点ピンホールによって排除されるため,焦点の合った部分のみが画像化される(図2).この画像は光学セクショニング画像と呼ばれ,ボケ像が重畳しないため通常の光学顕微鏡よりもコントラストが高い.セクショニングの効果は光源波長が短いほど,対物レンズの開口数が大きいほど強くなる性質を持つ[2].


三次元形状測定の原理
試料と対物レンズの距離を相対的に変化させながら光学セクショニング画像を複数取得し,画像の各画素について最大輝度値とその時の最大位置(Z)を求める(図3).各画素で求めた最大位置(Z)は標本表面の相対的な高さの分布を示していることから,これが三次元形状データとなる(図4左).また各画素で求めた最大輝度値を画像化したものは全ての画素位置で焦点の合った画像となっており,全焦点画像またはエクステンド画像(図4右)と呼ばれる.


図表の追加

また、写真や図面を利用する場合は、適切なサイズを用いたサムネールを設定し、枠を画面の右側に配置することをお勧めします [1]

関連項目

関連する用語がPrecipediaに掲載され、これらを合わせて閲覧することでさらに用語への理解が深まる場合には、ぜひそれらの用語へのリンクを作成ください。 また、該当する用語が存在しない場合には、ここにリンクを作成した後にクリックすることで作成を開始することができます。

外部リンク

執筆者の所属研究組織、製品製造企業など、これらを合わせて閲覧することでさらに用語への理解が深まるサイトが存在する場合は ぜひそれらへのリンクを作成ください。

引用

原著論文、著書など、他に著作権の存在する出版物等を引用する場合は、ここに脚注のリストを表示するようにしてください。

  1. 本テンプレートにもありますが、セクションの冒頭にリンクを作成することで文章がうまく図表の左側に回りこみます
  2. 架空のリンクです



記入の最後には、必ず用語の読み方とカテゴリに関する情報を追加するようにしてください。


[[Category:]]